

Radiological Protection Institute of Ireland

An Institiúid Éireannach um Chosaint Raideolaíoch

A Survey of Natural Radioactivity in Groundwater in Ireland

Alison Dowdall IRRS 7th Sept. 2012

Surface Water Supplies

- Approx. 82% of drinking water in Ireland comes from surface water
- Water from rivers, lakes, treated
- Stored in reservoirs

What is groundwater?

- Water in pore spaces of rocks and gravel
- Where water deposit is sufficient to provide supply, it is termed an aquifer
- Boreholes and springs or input to rivers

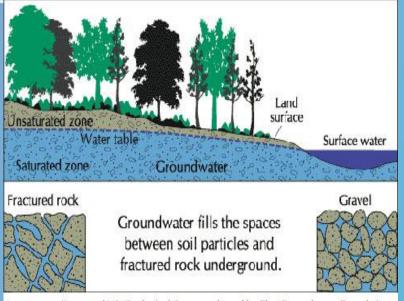


Image compliments of US Geological Survey, adapted by The Groundwater Foundation.

Groundwater supplies in Ireland

- 18% of Irish drinking water comes from groundwater supplies, comprised of boreholes (10%) and springs (8%)
- Approx 100,000 wells in Ireland (public and private)

Radiological Protection Institute of Ireland

Why do the RPII monitor water for Radioactivity

EU requirements

- 1. Water monitoring required under Article 35 and 36 of Euratom Treaty
- 2. Drinking Water Directive, 1998 (DWD)

Irish Legislation 1. S.I. 278 of 2007

- WHO Guidelines for drinking water, 1993
 100 mBq/l gross alpha, 1000 mBq/l gross beta Further analysis if these are exceeded
- Large surface water supplies

Objectives of the study

- **1. Knowledge gap regarding natural radioactivity in groundwater**
- 2. Assess levels of natural radioactivity in groundwater for compliance with Drinking Water Directive and WHO guidelines
- 3. Assess levels of radon in groundwater with RPII recommended level
- 4. Publish the findings

Sampling

- EPA Groundwater Monitoring points
- Approx. 220 sites sampled quarterly
- RPII samples collected by EPA as part of their sampling programme
- Samples collected for
 - ✓ radon analysis
 - ✓ gross alpha and beta analysis
 - ✓ radium
 - ✓ polonium analysis

A wise decision!!

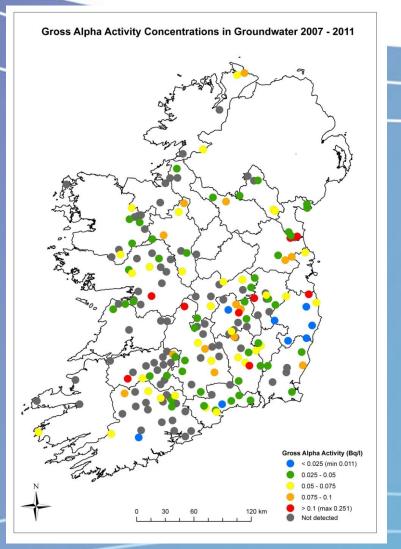
Analysis

Drinking Water Directive 1998

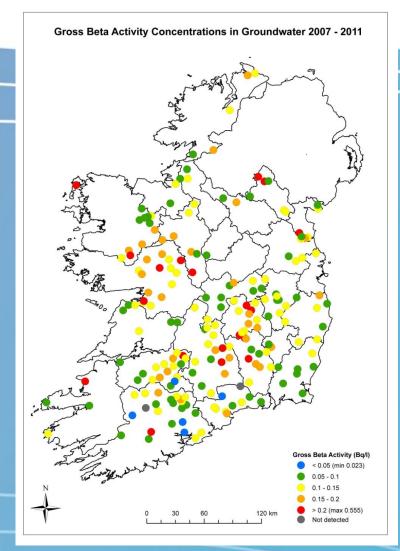
- Groundwater sources screened using WHO screening limit of 100 mBq/l for gross alpha, 1,000 mBq/l for gross beta
- Where a limit is exceeded, identify radionuclide causing the activity
- Uranium, polonium, radium
- Drinking Water Directive Total indicative dose should be <0.1 mSv per year

Radon in Water (EU recommendation of 2001)

- Radon in water measured for 217
 locations
- 3 samples from each source collected
- RPII recommended level of 500 Bq/l


Results of Gross Alpha and Beta Analysis (1)

Analysis Type	Activity Concentration Range (mBq/I)
Gross Alpha	<8.1 - 250.8
Gross Beta	<48.25 - 553.63


- 203 samples screened for gross alpha and beta
- 28 exceeded gross alpha screening limit of 100 mBq/l (13% of samples tested)
- Further analysis required for these samples uranium, radium and polonium

Results of Gross Alpha and Beta Analysis (2)

Radiological Protection Institute of Ireland

Uranium Contribution to Gross Alpha Activity

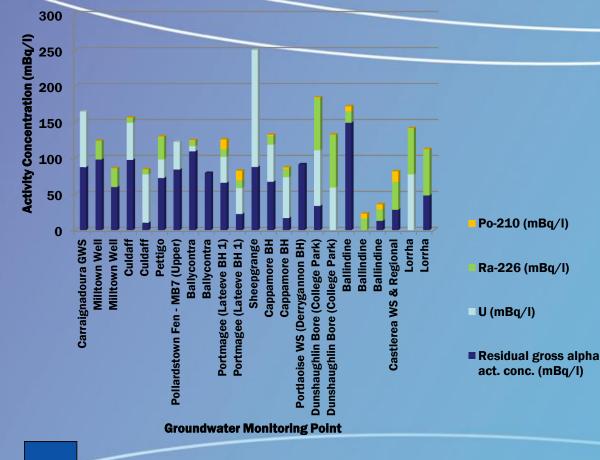
- EPA measure uranium concentration
- Use this data to assess the uranium contribution to the gross alpha activity
- Assuming uranium isotopes are present in equilibrium, then using natural abundances and ICRP 1996 ingested dose coefficients, activity concentrations calculated
- For 12 samples, uranium accounted for elevated alpha activity
 - **Other 16 require Po-210 and Ra-226 analysis**

Results of individual radionuclide measurements

Radionuclide	Ingested Dose	Activity per radionuclide	Maximum activity
	Coefficient for	(mBq/I) equivalent to 0.1	concentration
	Adults (Sv/Bq) ¹	mSv	measured (mBq/I)
Polonium-210	1.2 x 10 ⁻⁶	117	14.48
Radium-226	2.80 x 10 ⁻⁷	500	73.00
Thorium-232	2.3 x 10 ⁻⁷	600	Not measured
Uranium-234	4.9 x 10 ⁻⁸		
Uranium-235	4.7 x 10 ⁻⁸	3000	163
Uranium-238	4.5 x 10 ⁻⁸		

Note ¹ Source: ICRP,1996

WHO provisional guideline for uranium = $15 \mu g/I$



Contribution of Uranium, Ra-226 and Po-210 to Gross Alpha Activity Concentration

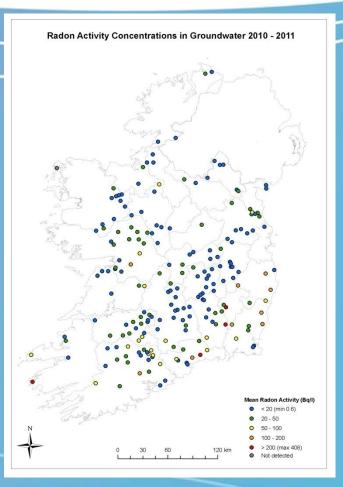
Po-210 (mBg/l)

Ra-226 (mBq/l)

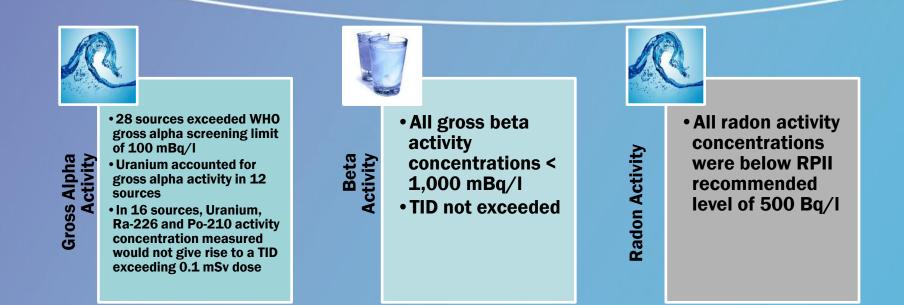
act. conc. (mBq/l)

 For 28 sources, gross alpha result ~ 100 mBq/l

•Summing uranium, Ra-226 and Po-210, activity in 23 sources accounted for


- Gross alpha analysis repeated for 5 sources and gross alpha activity lower
- At low environmental levels, uranium contributes significantly to gross alpha activity concentration

Radiological Protection Institute of Ireland


Radon in water results

- Max. activity concentration measured was 344.5 Bq/I
- RPII level for public supply is 500 Bq/l
- Estimated dose of 2.52 mSv per year (at source => Worst case scenario)
- No correlation was found between uranium and radon activity concentration

Conclusions

First draft of report written, due to be published end of 2012

Radiological Protection Institute of Ireland

Thank You!

- To the EPA, for all their assistance with our sampling, for their uranium dataset and all other requests for information during this project
- Colleagues in Environmental Surveillance, RPII
- Audience of IRRS meeting

